Version 1.1

Individual Paper: The macroeconomic environmental impacts of digitalization

Event large 4b8aa978adbb7c8e80151f5a83c6782a12e763374ae3a042a55e7e626a64d93b

A consensus on the positive effects of digitalization on the environment emerges amongst stakeholders in politics and economics. The German Department of Trade and Industry claims that digitalization increases the economy’s sustainability by increasing resource- and energy-efficiencies. (BMWE, 2015). According to the Association of German Engineers, digitalization can facilitate an increase in resource efficiency by 25% (VDI, 2017). And the ‘Global e-Sustainability Initiative’, an international network of IT companies, argues that digitalization can decrease global carbon emissions by an impressive 20% (GeSI und Accenture, 2015).

Looking closer at these studies reveals that such predictions are based upon weak empirical basis. Some publications simply postulate high potentials of digitalization to decrease environmental pressures (BMBF, 2015; Bundesregierung, 2014; PKFWW, 2013). Others are based on empirical calculations, but overestimate the positive effects and underestimate the negative ones. The reason is that it is possible to calculate the direct (negative) effects of digitalization rather accurately (energy associated with the production and use of digital technologies), while the indirect (positive) effects are hard to quantify (increasing energy- and resource efficiency increases in the production and application of various goods and services). The latter are therefore ‘guesstimated’ in the aforementioned studies. Apart from that almost all calculations leave out rebound-effects (Hilty, Aebischer, & Rizzoli, 2014; Lange, 2018; Lange & Santarius, 2018). One way of estimating the overall effects of digitalization is therefore to incorporate all three effects: direct effects, effects on energy and resource efficiency, and rebound effects. Hilty and Bieser (2017) provide anecdotal evidence for this for selected products.

This paper is the first one to estimate effects on the overall economy via a country-level panel data analysis on the relationship between degrees of digitalization and indicators of biosphere use, such as the footprint or carbon emissions.

Bundesministerium für Bildung und Forschung. (BMBF, 2014). Die neue High-Tech Strategie der Bundesregierung. Berlin: BMBF.

Bundesministerium für Wirtschaft und Energie. (BMWE, 2015). Industrie 4.0 und Digitale Wirtschaft. Impulse für Wachstum, Beschäftigung und Innovation. Berlin: BMWE.

Die Bundesregierung. (2014). Digitale Agenda 2014–2017.

Hilty, L. M., Aebischer, B., & Rizzoli, A. E. (2014). Modeling and evaluating the sustainability of smart solutions. Environmental Modelling & Software, 56, 1–5.

Hilty, L. M., & Bieser, J. (2017). Opportunities and Risks of Digitalization for Climate Protection in Switzerland. Zürich.

Lange, S. (2018). Die Digitalisierung nachhaltig gestalten – Grünes Wachstum, säkulare Stagnation oder Postwachstumsökonomie? In Wachstum und Wandel. Springer.

Lange, S., & Santarius, T. (2018). Smarte grüne Welt? Digitalisierung zwischen Überwachung, Konsum und Nachhaltigkeit. München: oekom Verlag.

Promotorengruppe Kommunikation der Forschungsunion Wirtschaft – Wissenschaft. (PKFWW, 2013). Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0.

Verein Deutscher Ingenieure. (VDI, 2017). Ressourceneffizienz durch Industrie 4.0. Potenziale für KMU des verarbeitenden Gewerbes.


Day: 2018-08-24
Start time: 11:00
Duration: 00:15
Room: ABF205
Track: Climate Change, Climate and Environmental Justice




Click here to let us know how you liked this event.